
J. Fluid Mech. (1972), col. 55, part 4, p p .  609-628 

Printed i r r  Great Britain 
6091 

Dissipation and breakdown of a wing-tip vortex 

By A. MAGER 
The Aerospace Corporation, 

El Segundo, California 

(Received 11 March 1972) 

The solutions of the incompressible quasi-cylindrical momentum-integral equa- 
tions describing the flow in the viscous core of a wing-tip vortex are obtained in 
a closed form and are shown to have two distinct branches. The discontinuities 
of these solutions have infinite axial gradients and therefore, following Hall, 
are assumed to signal the inception of the vortex breakdown. Benjamin’s finite 
transition, with its excess flow force dissipated, is shown to give results equiva- 
lent to a sudden cross-over, upstream of the discontinuity, from one branch 
solution to another. The critical point of such a cross-over is downstream from 
the cross-over, a t  the discontinuity. Sarpkaya’s experimental data, and the 
nature of the solutions ahead of the discontinuity, suggest that the physical 
manifestation of the discontinuity is the spiral breakdown, whereas the cross- 
over seems to be related to the rapidly expanding and subsequently contracting 
axisymmetric bubble. This therefore implies that the beginning of the spiral 
breakdown is the all important disturbance which triggers off not only the 
downstream asymmetric departure of the flow from its quasi-cylindrical form 
but also the formation of the upstream axisymmetric cross-over bubble. Solutions 
for the turbulent flow downstream from the spiral breakdown indicate that the 
wing-tip vortex breakdown can result in an appreciable reduction of the maxi- 
mum circumferential velocity and should thus lessen the danger that trailing 
vortices present to following aircraft. 

1. Introduction 
The problem of a vortex with an incompressible viscous core has received 

considerable attention, as is shown by the reviews of Gartshore (1962), Hall 
(1966) and Lewellen (1970). Recently, much of this attention has been focused 
on the so-called vortex breakdown, because it is thought that this phenomenon, 
though not too well understood, may nevertheless be capable of dissipating the 
wing trailing vortices. Behind very large aeroplanes these vortices represent a 
definite but hidden danger to small, following aircraft. A detailed discussion of 
the various attempts to analyse the vortex breakdown was recently published 
by Hawkes (1969) and some very beautiful photographs of the various forms of 
this phenomenon were shown by Sarpkaya (1971). The prevailing picture which 
appears to be emerging from experimental and analytical approaches is one in 
which for sufficiently large Reynolds numbers and circulation numbers the 
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vortex breakdown is viewed as some kind of readjustment between two types 
of swirling flow: those that do, and those that do not, contain reverse flows. 
This concept has been proposed, on the basis of his experiments, by Harvey 
(1962) and analytically rationalized by Benjamin (1962), who by use of elegant 
mathematics suggested that the inviscid vortex breakdown, like a hydraulic 
jump, is a transition between two conjugate states of flow. 

Vortex breakdown appears to make it impossible to continue the analysis of 
the viscous core. This has been pointed out by Hall (1967), who showed that the 
point beyond which the integration of his equations could not be continued was 
close to an actually observed vortex breakdown. Hall ascribed this failure to the 
fact that his equations were quasi-cylindrical and therefore could not cope with 
the very large axial gradients which were occurring just ahead of the breakdown. 
He further proposed that the failure of the quasi-cylindrical approximation 
should be interpreted as signalling the onset of the vortex breakdown in a way 
similar to that in which the failure of the boundary-layer approximation signals 
the onset of separation. Gartshore ( 1963), using quasi-cylindrical momentum- 
integral equations, also encountered singularities beyond which the integration 
of his equations could not be continued. He, too, suggested that these singulari- 
ties may be the mathematical indication of the vortex breakdown. 

More recently, the quasi-cylindrical momentum-integral equations for the 
viscous core of t,he swirling flow through the nozzle were found by Mager ( 1 9 7 1 ~ )  
not only to have singularities, but also to yield solutions on both sides of these 
singularities having the same general characteristics as those of the two con- 
jugate states described by Benjamin. These results then strongly suggested that 
the integral analysis, by inherently expressing the appropriate conservation 
laws within the whole core, is well suited to the description of the different 
states on both sides of the vortex breakdown. Therefore, this analysis may be 
very expedient for determining the related conditions across the vortex break- 
down. To carry this out, the behaviour of the solutions of the quasi-cylindrical 
momentum-integral equations needed to be investigated more thoroughly and 
it was for such a purpose that the present work was undertaken. 

2. The phase plane 
The derivation of the quasi-cylindrical approximation to the complete equa- 

tions of motion for axially symmetric flow has been given by Hall (1966). This 
approximation requires that the gradients in the axial direction be much 
smaller than those in the radial direction, permitting a corresponding neglect of 
the appropriate terms. Though this process is similar to that which occurs in the 
boundary-layer approximation, it leads to an important difference, namely, in 
order to balance the centrifugal force, the static pressure must vary in the radial 
direction. By indicating dimensional quantities by an overbar and dividing all 
velocities by the maximum velocity Q = (2F8/js)*, all pressures by the maximum 
dynamic pressure 0*5jsQ2 (so that the non-dimensional external total pressure P8 
is unity) and all lengths by the initial core radius &, one finds that in terms of 
cylindrical co-ordinates ( r ,  0, z )  with corresponding velocity components (u, v, w) 
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the statements of the conservation of mass and momentum for steady incom- 
pressible laminar flowt are 

(uvr2),+ (vwr2)2 = 
Re 

(uwp), + (w2r). = - Brpz + ( W e )  [ ~ ( W ) , I T ,  ( 1 4  

where Re = @JY is the Reynolds number of the laminar flow. 
These equations are integrated in the radial direction by assuming that the 

velocities at the boundary of the core change in a continuous manner into a 
known potential flow with constant circulation I’ = r/2nSi&. This process 
yields (cf. Mager 197 1 a)  the quasi-cylindrical momentum-integral equations 
for a core of area a, which satisfy the conservation of mass and express the 
conservation of momentum in the radial, circumferential and axial directions, 
respectively : 

p,,= 1 - ( W z + V 2 + 1 3 ) ,  I i 2 = 2 / R e ,  P a ,  b )  

(2c) + 0-51;, + Il W’ - (@5I’)2(a’/a) = 0. 

In  these equations the prime indicates the total derivative with respect to z, 
the subscript 0 denotes the values on the axis and the various integrals are 
defined as 

It may be seen from the definition of 112 and equation ( 2 b )  that the angular 
momentum inside the core is dissipated by the viscous action and that this is 
due to the assumed constant circulation (r) of the external potential flow, 
which produces an ‘effective’ torque at the core boundary. This effective torque 
implies that the circumferential shearing stress does not disappear there and 
that this stress, for r > 6, must still be supported by the circumferential velocity 
distribution of the potential flow and be caused by a torque acting on the flow 
a t  r = co. This somewhat unexpected variation of the angular momentum has 
been thoroughly discussed by Morton (1969), who also pointed out that single 
unbounded vortices of this type cannot be generated because they would 
require infinite kinetic energy and would also have infinite angular momentum. 
Therefore, in nature such vortices do not occur singly but in pairs. For a pair of 
these vortices, with equal and opposite circulation, the kinetic energy is finite, 
the angular momentum is zero and the two torques interact at infinity to cancel 
each other. Of course, for the present investigation it is sufficient to consider 
only one of the vortices and assume that the other one (except for the direction 
of rotation) behaves identically. This is the situation which arises in connexion 
with wing-tip vortices, for which W ,  the axial velocity outside the core, is 

t For turbulent flow the same equations with the real viscosity 3 replaced by the eddy 
viscosity 3, will be used. This will merely change the Reynolds number to Re, = mi/Vt. 
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constant. Thus if we set 6 = (2W/ReP)  z, equations ( 2 c )  and (2b) may be inte- 
grated to give, respectively, 

I1,+O~5I2,,- (0.5I’)21na = K,, Il2-I?[/W = K ~ ,  (3) 

where the integration constant K, may be recognized, after some manipulation, 
as the invariant flow force deficiency? and K~ as the invariant, initial value of 
the flux of the angular momentum deficiency. 

Even though the momentum-integral equations are thus formally integrated, 
their solution has not really been obtained because the relations between the 
various integrals (I,,, IZ2, 112, 13) and the core area a are not known. Obviously, 
additional equations are necessary, and these are provided by specifying the 
velocities ZI and w. One may do this by setting 

where 
w = w [ K + ( i  -4j11, v = v(f2+pj3), v = ris, 

7 f r/a, f1 72(6-s7+372), fz G 7(2-q2), f 3  ~ ( I - V ) ~ ,  

and 6(<) is the radius of the core boundary, a(g) = wo/W is the form parameter 
of the axial velocity distribution and p(<) is the form parameter of the circum- 
ferential velocity distribution. In  general, p will be taken as a step function of 5 
whose value is a constant and different from zero only behind the vortex break- 
down. It should be noted that the above expressions allow the velocities in the 
core to  match the magnitudes as well as the slopes of their corresponding com- 
ponents (w = W ;  v = r / r )  in the external potential flow. 

Using these assumptions the integrals become 

Ill = aW2F,, I,, = aWF2, 122 = r2B,, I3 = V2B2, 

where the functions Fj and B j  may be written as polynomials in CI and p: 
Ej .  = K ,  + Kj,a + Kj2a2, 

the coefficients Kji and bji  being listed in the appendix. 

R([) = ( Y / W ) ,  = r2/(aW2) and the functions 

Bj  G bjo + b,,P+ b j zP2 ,  

It is convenient, at this time, to introduce the square of the swirl number 

8,(c) = K, + 0.25 In (F/W) ,  - 0.5B,, 02(c) = K 2  + g. 
Of these, 19, is easily identifiable as the local flux of the angular momentum 
deficiency. To see the physical meaning of el, consider the fact that in the present 
formulation, owing to the assumed stepwise variation of p, 8, is also a step 
function, changing only behind the vortex breakdown. Thus ahead (or in the 
absence) of vortex breakdown, 8, may be used as a measure of the invariant flow 
force deficiency. Substituting into (3) and (2a) we thus obtain 

F, = R(8,- 0.251n R), F2 = RO,, (4% b )  

P O =  1-W2[ l+R(1+B2)] .  (4 c) 

t This name is used following Benjamin, who called B 277 (p+PG2)  Fd? the flow 

force. It should be noted, however, that since the static pressure at the core boundary 
varies K~ and 

s,” 
are not obviously interchangeable. 
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FIGURE 1. Lines of (a) constant total and static pressure on the axis and ( b )  constant flow 
force deficiency tcl (e.g. 6,) in the phase plane. Solid curves in ( 6 )  me labelled with values 
of 8,. 

We can see from (4c) that the lines of constant p o  coincide with the lines of 
constant R and also, since the total pressure Po on the axis is given by 

Po P O +  (aW)' = 1 - W2[1 - 01, + R( 1 +B,)], 

that the lines of constant Po are given by parabolas symmetric about the R 
axis and translated for larger values of Po towards smaller values of R. These 
are shown in figure 1 (a) .  

Considering now the a, R plane, usually known as the phase plane,? and 
realizing that the flow cannot exist for p o  < 0 (because all pressures are absolute), 
we see that the region in which the solutions can exist is bounded by R = 0 
(flow without swirl) and by the maximum value R, = (1 - W2)/[W2(1 +B,)] 
(po  = 0). In  addition, when the flow inside the core has the same total pressure 
as that outside (Ps = l),$ then this region is also limited by the parabolas 
connecting the points a = k 1, R = 0 and a = f. [ 1 +  R,(1 + B,)]t, R,, which 
are the lines on which Po = 1. All these limits are shown in figure 1 (a).  

The reason for this designation will become clear when the connexion with the 

$ This may or may not be the case when jet engines are located close to the wing tip. 
differential equations is discussed. 
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3. Solution of the axial momentum equation 
Turning our attention to (4a),  we note that since K,, is not zero it too repre- 

sents some form of the quadratic in the a, R plane. In  particular, by defining 
a transcendental function r = R(8, - 0.25 In R)  we obtain distorted parabolas 

a = a* 5 [(r - ?-*)/KI2]*, ( 5 )  

where a* = - 0.5K,,/Kl2, r* = K,, - 0~25K,2(K,,/K,,)2. 

Since K,, is negative, 7 must always be smaller than r*. However, the function 
7 has a maximum at R = exp (48,- 1) so there must be a speck1 value of the 
flow force deficiency K: (and thus also 8;) beyond which regions of R in which 
the solution cannot exist will appear. For 8, = 8:, the two (hereafter called upper 
and lower) separate branches of ( 5 )  meet a t  a, = a, = ax and R = R* = 4r*, so 
that for all 8, > 8: the upper and lower branches remain joined. 

One should note from the relations in the appendix that, regardless of the 
particular form of the axial velocity profile (e.g. choice off,), K,, = - (K,, + Klo). 
Because of this interdependence, for R = 0 (e.g. either infinitely large a, or 
I? = 0) all upper- and lower-branch solutions pass through 

01, = 1 and a1 = -(1-2a*), 

respectively. Thus, when the swirling flow is completely dissipated all upper- 
branch solutions result in uniform axial flow w = W ,  while all lower-branch 
solutions give strongly reversed flow on the axis. The slight asymmetry, with 
respect to a = 0, which also produces Po,, < Po,,, is dependent on the particular 
choice off, and therefore may, or may not, be real. 

Figure I ( b )  illustrates the behaviour of (5) and shows that, when the flow force 
deficiency is too large, the core of the quasi-cylindrical flow cannot satisfy the 
conservation of the axial momentum for certain intermediate values of R, and 
that the region in which this occurs lies on both sides of R*. One should also 
observe that, because a* > 0, reversed flow on the axis (e.g. a < 0) cannot occur 
for upper-branch solutions with 8, < 8:. 

4. Continuous solutions of the system 
We note that since K,, = 0, the solution of ( 4 b )  is given by a straight line 

a = (R02-~20)/K21? (6) 

which rotates, as c increases from its initial value ci, in the counter-clockwise 
direction about the point a = - K,,/K,,, R = 0. This rotation is the analytical 
representation of the viscous dissipation which produces the ever larger value of 
8,, that is, the ever growing axial flux of the angular momentum deficiency. For 
inviscid flow Re = 00 and 0, remains equal to its initial value K,, so that the line 
given by (6) does not rotate. 

Clearly, then, the solution of the system (4a,  b )  is given by the intersection 
of (5) and (6), thus indicating that the flow always requires a certain definite 
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FIGURE 2. (a)  Continuous solutions of the system (el < 8:) in the phase plane. ( 6 )  Con- 
tinuous solution in the physical plane for & = 0, a, = 1-80, Ri = 0.84 (e.g., 8, = - 0.179). 
In  upper diagrams : -, wI W ;  - - -, v/ W. In lower diagram : -, wo/ W ;  - - -, V/ W ;  -. -- , Po; ---- , Po. (c) Discontinuous solutions of the system (8, > 8:) in the 
phase plane. 
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balance between its angular momentum and its flow force. This process is shown 
in figure 2 (a). 

Assume that the initial values ai, R, at & are such that when substituted into 
(4 a) they yield 8, < 8;. This means that the initial point will lie on one of the 
separate branches of (5) and that the solution can proceed uninterruptedalong 
this branch towards lower and lower values of R as the line (6) rotates towards 
R = 0. Thus one obtains for each < the corresponding a(<) and R(<) from which 
all velocities and pressures may be determined. In  practice, of course, it is un- 
necessary to rely on this geometrical construction. For each set of initial condi- 
tions one determines 8, and K ~ .  Next, (5) yields a(R, 8,) and this, in turn, when 
substituted into (6) gives Ba(a, R) and therefore <(a, R). 

The velocities and pressures found thus for the upper branch of figure 2(u) 
are shown as a function of the axial distance in figure 2 ( b ) .  It may be seen in 
figures 2 ( u )  and (b )  that these continuous solutions describe the dissipation of 
the swirling motion with steadily increasing static pressure on the axis. This 
viscous decay of the vortex wake is consistent with the results obtained by other 
investigators (cf. Hall 1965; Bossel 1970). 

As R decreases toward R", the absolute value of the axial velocity on the 
axis tends to decrease and then, as R decreases further, it increases again. 
This decrease of lwol is most pronounced when 8, z 8:, e.g. when the flow force 
deficiency is large. Under these conditions the total pressure, and hence the 
total energy, initially tends to decrease and then remains nearly constant (see 
figures 2 ( b )  and 1 (a) ) .  Apparently, when the flow force deficiency is large, the 
energy which the swirling wake is able to gain by expansion into the outer 
potential flow is not sufficient to satisfy its own internal requirements. As a 
result of the decreasing (or even constant) total pressure and the simultaneously 
increasing static pressure, both the axial and the circumferential velocities 
decrease. The existence of this coupling has been previously pointed out by 
Morton (1969). 

For R < R* the total pressure increases in the downstream direction so that, 
for the upper-branch solutions, a t  the downstream infinity Po,u = 1 (but 
Po,l < 1) and the energy recovers its free-stream value at  all radii.? Thus for 
small circumferential velocities, the vortex wake, by expanding into the outer 
potential flow, gains more energy than is necessary to satisfy its own internal 
requirements. However, the static pressure is essentially uniform throughout 
the core and tends very slowly towards 1 - W 2 .  )woI must thus increase in 
parallel with the increasing total pressure, and the coupling between the axial 
and circumferential velocities disappears. 

At the downstream infinity, where the swirling motion is completely dissi- 
pated, the flow in a core of a wing-tip vortex must have an axial velocity which is 
everywhere equal and opposite to the velocity of the aeroplane. Since this 
condition is satisfied only on the upper branches we see that the lower branches 
of the continuous solutions do not yield physically realistic representation of the 
flow in the core of a wing-tip vortex. One should, however, note that when 

t Such recovery also occurs when a non-rotating wake is dissipated by the viscous 
action [see, for example, Goldstein (1950)l. 
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8, = 8: the passage from the lower to the upper branch at a = a* and R = R* 
is possible, so that under these special conditions the lower-branch solution can 
yield physically significant results. 

5. Flow ahead of vortex breakdown 
As was discussed previously, when the initial conditions are such that the 

flow force deficiency is too large (e.g., 8, > 8:), the upper and lower branches 
are joined and there appears a region where the real solutions of (4a) cannot 
exist. Let us now assume that Ri > R* so that as 5 increases the two solutions 
on the joined branches of the 8, curve more towards each other until they meet 
a t  (a,, R,), when the line cu is just tangent to the curve 8,. This is shown in 
figure 2 ( c ) .  Since 5 can only increase, it is obvious that the solution cannot be 
continued beyond this point and that it ceases to exist until at  some other 
< = lb (say) the line b again becomes tangent to the second part of the 0, curve 
at point (“b,Rb). From this point on, the solutions are continuous and spread 
apart on the two branches of the 8, curve for all 5 > &. Thus, when O1 > 8: and 
Ri > R*, the solutions of the system, regardless of the branch on which they 
start, are discontinuous, terminating a t  (au, R,) and starting again a t  (ab, Rb). 

It is important to note that, in general, a, > 0, so that the discontinuity occurs 
when the flow is not actually stagnated on the axis. A failure of the equations 
when the flow is still not stagnated has also been obtained by Hall (1967) and 
Bossel (1970j.f This misbehaviour of the analysis is thus different from that 
experienced in the computations of the boundary layer, where an actual stag- 
nation point at the surface signals the onset of separation. In  spite of this fact, 
Hall ascribed this failure to the inability of the quasi-cylindrical approximation 
to cope with the very large axial gradients which he obtained there and suggested 
that it indicates the beginning of the vortex breakdown. Because of this argu- 
ment it is important to know the precise values of a and R at which such dis- 
continuities occur. This may be done by equating the values of da/dR given by 
(5) and (6). After some manipulation one obtains 

4K,, F3 + R = 0, 

a = - K,,/K,, & 0*5[(R** - R)/K1,]4, 
(7a) 

whose solution is (7b)  

where R** = 4[K,, - K,,K,,/K,, + K,,(K,,/K,,)2]. We thus see that the values 
of a and R a t  the discontinuity are affected only by the constants K j i  (and hence 
by the assumed velocity distributions fl, f, and f3), but are completely indepen- 
dent of the Reynolds number or the values of the invariants K~ and K,. Also, as is 
illustrated in figure 2 (c) ,  the plot of (7b) (for p = 0 and using plus sign only) 
passes through (a*, R*), so that the flow solutions terminate (we shall use sub- 
script a to denote termination) whenever a = a, > a* and R = R, > R*. 

In  order to clarify the causes of this failure of the quasi-cylindrical analysis 
it is appropriate to check whether the basic assumptions of such an analysis 
remain valid at, or near, the discontinuities. This is conveniently done by 

t In spite of the fact that Hall did not use momentum-integral method and Bossel 
employed a series of exponentials in his calculations. 
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inserting the expressions for the integrals Ii j  into the differential equations (2c) 
and (2 b) .  After differentiation this results in the system 

( 2K12a + K11) a‘ + (0.25 - TJR) R‘ = 0, (8a )  

KZ1a’ - (FJR) R‘ = R, 

which shows that a‘ and R‘ will be infinite whenever the determinant of their 
coefficients is zero. Such vanishing of this determinant occurs when (7b) is 
satisfied, thus showing that the quasi-cylindrical analysis fails because the flow 
attains very large axial gradients. Since such large axial gradients must clearly 
be present somewhere within the region of the vortex breakdown depicted in 
the photographs of Harvey (1962), Sarpkaya (1971) and others, we shall 
assume, in line with Hall’s (1967) idea, that the failure of the quasi-cylindrical 
analysis is an indication of the occurrence of the vortex breakdown. Thus for 
the flow to undergo the vortex breakdown its R, must be larger than the value 
of R at  which the line of its a, intersects the curve 8: [e.g. R, > R(B:, 041. This 
is shown in figure 3 (a) ,  where for any given set of initial conditions (ai, Ri) the 
path to the conditions a t  discontinuity (mu, R,) is also indicated. 

It is pertinent to note here that Bossel (1968) proposed a criterion which 
separates those vortex flows which will decay smoothly from those which will 
undergo vortex breakdown. According to his analysis, vortex breakdown will 
eventually occur whenever [(d~/dr),&/w,]~ = 2(R,/a,)& is larger than a certain 
value. For uniform flow (ai = l), this reduces to the requirement that Ri be 
larger than +, while figure 3(a )  shows that ai = 1 intersects 0: at Ri = 0.51, 
which agrees very well with Bossel’s result. 

In  a later paper, Bossel (1971) showed that for uniform flow the value of 
(dv/dr),S/w, at which his equations became singular (e.g. all derivatives became 
infinite in magnitude and reversed their sign) and at  which the vortex breakdown 
was thought to occur was 1-8. This compares directly to the value of 1.915 
which represents the first singularity of the inviscid equations describing the 
core of a swirling flow through the nozzle rotating like a solid body. The occur- 
rence of this singularity was suggested by King (1967) to be caused by the vortex 
breakdown and had also been previously found by Fraenkel ( 1956). Using Bossel’s 
values at  a, = 1 one obtains R, = $( 1*8)2 = 0-81. On the other hand, figure 3 (a )  
shows that, a t  a, = 1, R, = 0.95, which compares somewhat better with King’s 
criterion 4(1*92)2 = 0.92 than with Bossel’s value. 

By considering the nature of the flow just ahead of the discontinuity one 
gains additional insight into the physical conditions preceding the formation 
of this phenomenon. These conditions are shown in figure 3 ( 6 ) ,  where typical 
flow on upper and lower branches, for the same axial flux of the angular momen- 
tum deficiency 6, and circulation I?, is illustrated. As may be seen in this figure, 
on the upper branch, a strong adverse static pressure gradient produces a rapid 
deceleration of the axial flow and an expansion of the core. On the lower branch, 
however, the static pressure, though much higher, is almost constant except 
very near the discontinuity, where it tends to decrease. Because of this and 
because of the very slightly increasing total pressure, the axial flow accelerates 
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FIGURE 3. (a)  Effect of initial conditions on the occurrence of vortex breakdown. ( b )  Flow 
upstreamof discontinuity; a, = 0,628, R, = 0.611, W = 0.45, ru = T r .  8,-8,axialflux of 
the angular momentum deficiency. (i) Lower branch. (ii) Upper branch. (c )  Comparison of 
%ow force excess. (The extension of BIi - f?,, to continuous solutions is indicated by the 
broken line.) ( d )  Comparison of a,(R,) (solid line) with Benjamin’s critical line (broken line). 

and the core, which is much larger than on the upper branch, shows a tendency 
to collapse. This inclination of the core to expand on the upper branch and to  
contract slightly on the lower branch, together with the presence of character- 
istic axisymmetric ‘bubbles’ (which are formed by a rapid expansion of the 
flow followed by immediate contraction) in the many photographs of vortex 
breakdown, suggest that, just ahead of the discontinuity, at a fixed 6 and thus 
at  the same O,, the flow may be crossing over from the upper- to the lower- 
branch solution (see figure 3(a)) .  Of course, one cannot expect such a sudden 
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cross-over to be properly described by the present quasi-cylindrical analysis. 
However, once it occurs, the flow conditions behind it should be those of the 
lower-branch solution, which must still lead to the discontinuity. Hypothesizing, 
therefore, that the bubble represents such a cross-over, one should expect 
downstream of the bubble an acceleration of the axial flow, followed by a second 
strong disturbance which should be there even when the bubble does not exist. 
Indeed, in the photographs of Sarpkaya (1971, figures 9-11) one observes that 
a strong disturbance downstream of the bubble is always present, even before 
the bubble is ‘born’, and that the dye filament between it and the bubble has a 
tendency to disappear, as it would if the flow were accelerating. Thus the photo- 
graphic evidence appears to confirm our hypothesis and furthermore suggests 
that the analytical discontinuity may be related to the disturbance always 
visible behind the bubble and usually referred to as the ‘spiral breakdown’. 
Moreover, this same photographic evidence appears to indicate that the cross- 
over from the upper to the lower branch is in fact caused (e.g. the bubble is 
formed when the downstream disturbance is already present) by the distur- 
bance at  the discontinuity. Since such a triggering effect is very reminiscent of 
a hydraulic jump and also since Sarpkaya has actually stated that the bubble 
is Benjamin’s finite transition, it is appropriate to investigate whether our 
cross-over is equivalent to such a finite transition. 

To this end Benjamin’s (1962, example 2, for a tube of infinite radius, pp. 
620-622) results for the present case may be stated (using our nomenclature) as 
follows. For an initially supercritical flow with ai = I transitions will occur for 
all R, 6 1.44. These transitions will terminate in a conjugate subcritical flow 
having a flow force excessJf and are given by 

Should Benjamin’s transitions, after the dissipation of the excess flow force, be 
equivalent to our cross-over, they must (i) lie on a family of straight lines all 
intersecting in a common origin located close to our origin ct = - K,,/K,,, R = 0 
and (ii) have an excess flow force which behaves like Oli-OlC. (An exact agree- 
ment between the two is not expected because 8, is not the flow force.) Further- 
more, our upper- and lower-branch solutions would have to correspond to 
Benjamin’s supercritical and subcritical regimes, respectively. One should now 
note that a, is a linear function of R, whose origin is at  a, z - 1.3, Ri = 0, which 
compares well with our value of - K,,/K,, z 1.38, so that the first condition is 
clearly satisfied. To check the second condition, we plot in figure 3 ( c )  Benjamin’s 
(1962, equation (5.31), p. 622) expression for the flow force excess together with 
the difference B,, - Ole, as computed from (a,, R,) and (ac, R,). As may be seen in 
this figure, though Benjamin’s solution is inviscid and linearized, the two tend 
to vary in a very similar manner. Consequently, we may interpret figure 3 ( c ) ,  
together with the previous test, as an indication that the intersection of our 
lower-branch solutions with the line of fixed 5 would give results which would 
behave like those of Benjamin, once his excess of flow force were dissipated. 

or by the total pressure loss and this dissipation is not included in his analysis. 
t Benjamin indicates that in reality this excess will be dissipated by wave formation 
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Finally, to show that the upper-branch solutions are supercritical, we use 
Benjamin’s test function 4. The flow is subcritical when this function, in addition 
to its initial value d(0 )  = 0, has a t  least one zero in the interval 0 < q < 1. 
Transforming to the present formulation, Benjamin’s equation for 4 becomes 

@”- @’/r + ( ~ W @ / W )  [37( 1 - 7) (1 -a)  + RW(2 - 3r2 + r4)/w] = 0, 

which, when solved with @ ( O )  = @ ’ ( O )  = 0 for various values of a and R, permits 
the determination of the boundary between supercritical and subcritical flow 
regimes. This boundary is compared in figure 3 (d)  with the locus of the termina- 
ting discontinuity a,(R,) which separates our branch solutions. Again, though 
the two do not match too well, particularly for large R, it is clear from figure 3 (d )  
that our upper- and lower-branch solutions have the same relationship to 
ol,(R,) as the supercritical and subcritical regimes have to Benjamin’s critical 
line. 

We may thus conclude from the above comparisons that the cross-over from 
the upper to the lower branch of the discontinuous solutions gives results which 
are equivalent to the finite transition proposed by Benjamin, once the excess 
flow force of such a transition is dissipated. Furthermore, it is pertinent to point 
out here that, if the upper-branch solutions are supercritical and the lower- 
branch solutions subcritical, then it follows that the critical point for each cross- 
over (e.g. one with the same flow force deficiency as the primary flow) is located 
at the discontinuity and thus is downstream from the cross-over. This helps to 
explain why the spiral breakdown appears to be causing the formation of the 
bubble, as is indicated by Sarpkaya’s photographs. 

As a result of the above discussion it is clear that the point at which the quasi- 
cylindrical equations fail and which, according to Hall, signals the start of 
vortex breakdown is the point a t  which the asymmetric spiral breakdown (and 
not the axisymmetric bubble) begins. The spiral breakdown, however, appears 
to be the all important disturbance which is responsible not only for the down- 
stream departure from the quasi-cylindrical flow, but also, when the conditions 
are right, for the upstream formation of the transition bubble. It occurs because 
the quasi-cylindrical flow is unable to match its available flow force with its 
ever increasing angular momentum deficiency. Thus the occurrence of the spiral 
breakdown is the result of the viscous dissipation, though the cross-over which 
it sometimes causes is essentially an inviscid phenomenon. 

6. Flow behind vortex breakdown 
The photographs of Sarpkaya and others clearly show that the spiral break- 

down rapidly loses its asymmetric features through violent turbulent mixing. 
One may thus expect that a short distance downstream the flow is again axi- 
symmetric. This is confirmed by the data of Hummel (1965), who made his 
measurements behind the vortex breakdown of a delta wing. Such axisymmetric, 
though turbulent, flow should again be describable by our quasi-cylindrical 
analysis and therefore the proper conditions at the starting point (henceforth 
designated by subscript d)  for such a downstream solution are needed. These 
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should be obtainable by observing that the conservation laws must remain valid 
across the breakdown and therefore should yield a set of relations properly 
connecting the conditions ahead of the breakdown (aa, R,) with those at the 
start of our solution (aa, R,). 

To obtain these relations we shall first assume that the expressions given 
previously for the laminar velocity profiles are still applicable to the mean velo- 
cities of' the turbulent flow, but that the actual viscosity 5 is replaced by the 
eddy viscosity Vt. According to Hall (1966)) the ratio 6 = Tt/F has been shown by 
Owen to remain roughly constant when r / F  is invariant. Consequently, the 
equations derived above remain unchanged, except that now ct = cc. Since E is 
generally one to three orders of magnitude larger than unity, we see that the 
turbulent flow increases the rate at which the angular momentum is dissipated 
with z .  However, we shall assume here that the downstream flow returns to 
quasi-cylindrical form in a negligible distance, so that this increased rate can 
have no effect on the initial value of the local flux of the angular momentum 
deficiency 8,, and we must put K2d = K ~ ,  - (ca - c,) = K,, - (&;a(€- 1)  to ensure 
this.? Furthermore, since the statement of the conservation of the axial momen- 
tum docs not involve 5 the flow force deficiency K~ remains unchanged. 

We thus have 0,, = O,, and K ~ ,  = K ~ ~ .  To satisfy these requirements the 
present analysis proposes that the spiral breakdown and the resulting change 
to turbulent flow suddenly distort not only the axial, but also the circumferen- 
tial velocity profiles. This distortion is analytically introduced by a step increase 
of /3, from zero before the breakdown, to a new constant value which, as yet, is 
undetermined. It is important to note that, since the coefficients of Fl are inde- 
pendent of Bj ,  the only effect that such a change will have on the solution of the 
axial momentum equation is to produce a step decrease of el. Thus, though the 
flow force deficiency K, will remain invariant, the axial momentum equation 
behind the breakdown will behave as if the flow had a lower flow force deficiency 
than that ahead of the breakdown. Similarly, since the coefficients of F, are 
B, and B, but 0, is invariant, the angular momentum equation behind the 
vortex breakdown will, with increasing /3, shift its origin along the R = 0 axis 
towards a > - 1.38. It is thus obvious that by suitable adjustment of p one 
may always find a point on any of the other 8, lines which satisfies 8,, = O,, 
and Kla = K ~ , .  As an example, the loci of such points for a, = 0.480, R, = 0-491 
are shown in figure 4 and it is clear that additional constraints are required to 
choose the correct starting conditions for the downstream solution from the 
many possible ones. 

To make this choice we assume first that a t  downstream infinity the flow 
must be uniform (e.g., a = 1 at R = 0) and second, that the vortex break- 
down produces a strong deceleration of the flow on the axis (e.g. ad < 1). These 

t To obtain a solution across the vortex breakdown the author (1971 b)  has previously 
proposed joining the terminating and starting discontinuities having the same value of K ~ .  

Such a connexion requires > 19,~. However, a sudden change in 8, is inadmissible 
(this was first pointed out to the author by Prof. G. Carrier) because it implies a sudden 
change i n  the tangential stress distribution (and thus the circumferential velocity distri- 
bution) of the potential flow and therefore is inconsistent with the original assumptions 
of the asalysis. 
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FIGURE 4. Loci of points satisfying the invariance of angular momentum 
and flow force deficiency. 

assumptions are justified by the fact that at  infinity, where the vortex wake is 
completely dissipated, the velocity must be that of the aeroplane, and also by the 
many photographs of the spiral breakdown, all showing a definite stagnation 
point on the axis. These two requirements are sufficient to determine our starting 
conditions for the downstream solution and the only point which can satisfy 
them is obviously the one lying on q,  (see figure 4). Setting, therefore, Old = 8: 
and solving for P, one obtains 

P = - b1,/2blZ + [(bll/2blz)2 + 2 ( 4 , -  O:)/bl,l4 (9) 

and this value, when substituted into ( 4 b )  and ( 5 ) ,  together with O,, = O,,, 
determines ad and R,. 

It should be obvious that once its starting conditions are determined, the 
downstream solution may be continued along the 0: line in the described 
manner except, as previously mentioned, that & and KZd must now be used 
instead of and K,, respectively. It is also pertinent to point out here that, 
though the locus of the discontinuities a,(R,) will be affected by the value of /3, 
this approximates a counterclockwise rotation of the a,(R,) line about (a*, R*), 
so that it will not produce any discontinuities in our downstream solution. 
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FIGURE 5. Effect of breakdown on (a )  core velocities and ( b )  core area and pressure rise. 
(c) Changes of velocity and pressure distributions across vortex breakdown, LX, = 1, 
R, = 0.95, W = 0.45. -, W I  W ;  - - -, W /  W ;-.- , p/(1- Wz) .  (i) Ahead of breakdown. 
(ii) Downstream from breakdown. 

The results of such computations for and R,j are shown in figure 5 (a) ,  which 
summarizes the effect of breakdown on the core velocities. In  particular, since 
ad is negative it is obvious that, near the axis, the downstream solution starts 
with a slightly reversed flow. This effect, however, tends to diminish for large R,, 
that is, when the breakdown becomes strong. Figure 5(a)  also shows that, in 
spite of the strongly increasing p, the maximum circumferential velocity v, 
decreases and the radius rm a t  which this velocity is located varies but little. 
This reduction of the circumferential velocity implies that the occurrence of 
vortex breakdown will help to lessen the danger which the wing-tip vortices 
represent to following aircraft. 
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Similarly, figure 5 ( b )  shows that the vortex breakdown results in a substantial 
expansion of the core, an appreciable static pressure rise on the axis 

DPO POd-Poa 
and a somewhat smaller increase of the average total pressure in the core.? 
This figure also indicates a rather small increase of the total pressure on the axis. 
Apparently, the core gains energy by suddenly expanding and turbulently mixing 
with the potential flow. 

Finally, figure 5 (c) shows the changes in the velocity and pressure distributions 
for the case when the axial flow ahead of the breakdown is uniform (a, = 1) .  As 
may be seen from this figure, vortex breakdown produces extensive distortions 
of both the axial and the circumferential velocity distributions and a virtual 
equalization of the static pressure in the core. 

7. Summary of findings 
(i) Closed-form transcendental solutions of the quasi-cylindrical momentum- 

integral equations for the flow in the viscous core of a wing-tip vortex are shown 
to have two separate branches with the same flow force deficiency. However, at 
the downstream infinity, where the swirling motion is completely dissipated, 
only one (the upper) of these branches yields solutions with a uniform axial 
velocity equal and opposite to the velocity of the aeroplane. The other branch 
gives solutions with a strongly reversed flow on the axis. When the flow force 
deficiency has a certain special value, a smooth passage from one branch to  
the other is possible. 

(ii) When the value of the flow force deficiency is larger than the special value, 
the two separate branches join and a t  their junction discontinuities appear in 
the solutions. These discontinuities have infinitely large axial gradients with 
which the quasi-cylindrical equations cannot cope and therefore are identical to 
the breakdown-signalling singularities found by Hall (1967) and others. 

(iii) Benjamin’s (1962) finite transition, with its excess flow force dissipated, 
is shown to give results which are equivalent to a cross-over, upstream of the 
discontinuity and a t  a fixed 6, from the upper- to the lower-branch solution. 
Furthermore, the critical point for such a cross-over, which has the same flow 
force deficiency as the primary flow, is located a t  the discontinuity and therefore 
downstream from the cross-over. This means that the upper-branch solutions are 
supercritical and the lower-branch solutions subcritical, and implies that the 
disturbance a t  the discontinuityisresponsible for the occurrence of the cross-over. 

(iv) Upstream of the discontinuity, the upper-branch solution results in a 
strongly decelerating flow with a rapidly expanding core while the lower-branch 
solution (with same angular momentum) gives accelerating flow with a substan- 
tially larger but slightly contracting core. These facts, together with Sarpkaya’s 
(1971) photographs and observations that the axisymmetric bubble is always 

t The average total pressare in the core is independent of the circumferential velocity 

F L M  5 5  

- 
distribution and is given by P 2 Py dy = 1 - Wz(  1 + R-F4) .  

40 
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followed by the spiral breakdown, suggest that the spiral breakdown may be the 
physical manifestation of the discontinuity, while the axisymmetric bubble may 
be related to the cross-over. The inception of the asymmetric spiral breakdown 
is thus seen to be the all important disturbance responsible for the formation of 
the upstream bubble and also producing its own, downstream departure from 
the quasi-cylindrical flow. The equations show that this occurs because of the 
flow’s inability to match its ever increasing (owing to the viscous effect) flux of 
angular momentum deficiency with its available flow force. 

(v) Downstream from the spiral breakdown, where the flow has returned to  
axial symmetry through a turbulent mixing process, the starting-point for a 
new continuous turbulent flow solution is obtainable from the conditions ahead 
of the discontinuity by (a)  ensuring the preservation of the flow force and 
angular momentum deficiencies, ( b )  requiring the downstream solution to yield 
uniform axial flow a t  infinity, and ( c )  requiring that the axial velocities near the 
axis be low. 

(vi) The results thus obtained show that the wing-tip vortex breakdown 
causes a pronounced distortion of the axial and circumferential velocity profiles, 
expansion of the core, large static pressure rise on the axis and some recovery of 
the total pressure. Furthermore, the breakdown causes a substantial reduction 
of the maximum circumferential velocity and therefore it should be beneficial in 
lessening the danger that wing-tip vortices represent to following aircraft. 

Appendix. Constants and coefficients 
Define 

then the integration yields the values of k, given in table I. 

i 

I 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
12 

1 

1 
2 
0 
1 

0 
0 
0 
0 
0 
1 
0 
0 

m 

0 
0 
1 
1 
2 
2 
1 
0 
0 
0 
1 
0 

TABLE 1 

n t 

0 1 
0 1 
0 2 
0 2 
0 1 
0 - 1  
1 1 
2 1 
1 2 
1 2 
1 - 1  
2 - 1  

ki 
-%- 
10 
ILL 
315 
1 
S 
- 181 
830 
- 11 
2 4  
7 
6 

-23- 
8 4 0  
1 

2 8 0  

..L 
6 0  
3 1  

2 5 2 0  
3 

2 0  

.a. 
12 

- 

- 

__ 

-- 
._ 

The constants k, 
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Using these values of E ,  we can obtain the values of the coeficients b,, and 
K,, given in tables 2 and 3. 

j %... 0 1 

1 k6 2k, 
2 2kt3 4k11 
3 k1- Ic, - 4 0  

k10 - k9 4 0.5 - k ,  - k ,  + k, 

TABLE 2. The coefficients bji 

2 

k, 
2k1z 

0 
0 

Other important quantities are evaluated as: 

a" = 0.045454, R" = 0.190909, 0; = -0.163989, 

7" = 0.047727, R"" = -0.238636. 
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